ASTM A182 Grade F911 vs. EN 1.4618 Stainless Steel
Both ASTM A182 grade F911 and EN 1.4618 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is ASTM A182 grade F911 and the bottom bar is EN 1.4618 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 220 | |
200 to 210 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
200 |
Elongation at Break, % | 20 | |
51 |
Fatigue Strength, MPa | 350 | |
240 to 250 |
Poisson's Ratio | 0.28 | |
0.28 |
Shear Modulus, GPa | 76 | |
77 |
Shear Strength, MPa | 430 | |
480 to 500 |
Tensile Strength: Ultimate (UTS), MPa | 690 | |
680 to 700 |
Tensile Strength: Yield (Proof), MPa | 500 | |
250 to 260 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
280 |
Maximum Temperature: Mechanical, °C | 600 | |
900 |
Melting Completion (Liquidus), °C | 1480 | |
1400 |
Melting Onset (Solidus), °C | 1440 | |
1360 |
Specific Heat Capacity, J/kg-K | 470 | |
480 |
Thermal Conductivity, W/m-K | 26 | |
15 |
Thermal Expansion, µm/m-K | 13 | |
16 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 9.2 | |
2.4 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 10 | |
2.7 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 9.5 | |
13 |
Density, g/cm3 | 7.9 | |
7.7 |
Embodied Carbon, kg CO2/kg material | 2.8 | |
2.7 |
Embodied Energy, MJ/kg | 40 | |
39 |
Embodied Water, L/kg | 90 | |
150 |
Common Calculations
PREN (Pitting Resistance) | 15 | |
19 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 130 | |
270 to 280 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 650 | |
160 to 170 |
Stiffness to Weight: Axial, points | 14 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 24 | |
24 to 25 |
Strength to Weight: Bending, points | 22 | |
22 to 23 |
Thermal Diffusivity, mm2/s | 6.9 | |
4.0 |
Thermal Shock Resistance, points | 19 | |
15 to 16 |
Alloy Composition
Aluminum (Al), % | 0 to 0.020 | |
0 |
Boron (B), % | 0.00030 to 0.0060 | |
0 |
Carbon (C), % | 0.090 to 0.13 | |
0 to 0.1 |
Chromium (Cr), % | 8.5 to 9.5 | |
16.5 to 18.5 |
Copper (Cu), % | 0 | |
1.0 to 2.5 |
Iron (Fe), % | 86.2 to 88.9 | |
62.7 to 72.5 |
Manganese (Mn), % | 0.3 to 0.6 | |
5.5 to 9.5 |
Molybdenum (Mo), % | 0.9 to 1.1 | |
0 |
Nickel (Ni), % | 0 to 0.4 | |
4.5 to 5.5 |
Niobium (Nb), % | 0.060 to 0.1 | |
0 |
Nitrogen (N), % | 0.040 to 0.090 | |
0 to 0.15 |
Phosphorus (P), % | 0 to 0.020 | |
0 to 0.070 |
Silicon (Si), % | 0.1 to 0.5 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.010 | |
0 to 0.010 |
Titanium (Ti), % | 0 to 0.010 | |
0 |
Tungsten (W), % | 0.9 to 1.1 | |
0 |
Vanadium (V), % | 0.18 to 0.25 | |
0 |
Zirconium (Zr), % | 0 to 0.010 | |
0 |