MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F911 vs. C10800 Copper

ASTM A182 grade F911 belongs to the iron alloys classification, while C10800 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F911 and the bottom bar is C10800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
4.0 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 430
150 to 200
Tensile Strength: Ultimate (UTS), MPa 690
220 to 380
Tensile Strength: Yield (Proof), MPa 500
75 to 370

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 600
200
Melting Completion (Liquidus), °C 1480
1080
Melting Onset (Solidus), °C 1440
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 26
350
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
92
Electrical Conductivity: Equal Weight (Specific), % IACS 10
92

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 40
41
Embodied Water, L/kg 90
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
15 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 650
24 to 600
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 24
6.8 to 12
Strength to Weight: Bending, points 22
9.1 to 13
Thermal Diffusivity, mm2/s 6.9
100
Thermal Shock Resistance, points 19
7.8 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.00030 to 0.0060
0
Carbon (C), % 0.090 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0
Copper (Cu), % 0
99.95 to 99.995
Iron (Fe), % 86.2 to 88.9
0
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.040 to 0.090
0
Phosphorus (P), % 0 to 0.020
0.0050 to 0.012
Silicon (Si), % 0.1 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 0.9 to 1.1
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0