MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F911 vs. C18900 Copper

ASTM A182 grade F911 belongs to the iron alloys classification, while C18900 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F911 and the bottom bar is C18900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
14 to 48
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 430
190 to 300
Tensile Strength: Ultimate (UTS), MPa 690
260 to 500
Tensile Strength: Yield (Proof), MPa 500
67 to 390

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 600
200
Melting Completion (Liquidus), °C 1480
1080
Melting Onset (Solidus), °C 1440
1020
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 26
130
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
30
Electrical Conductivity: Equal Weight (Specific), % IACS 10
30

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 40
42
Embodied Water, L/kg 90
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
65 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 650
20 to 660
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 24
8.2 to 16
Strength to Weight: Bending, points 22
10 to 16
Thermal Diffusivity, mm2/s 6.9
38
Thermal Shock Resistance, points 19
9.3 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.020
0 to 0.010
Boron (B), % 0.00030 to 0.0060
0
Carbon (C), % 0.090 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0
Copper (Cu), % 0
97.7 to 99.15
Iron (Fe), % 86.2 to 88.9
0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.3 to 0.6
0.1 to 0.3
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.040 to 0.090
0
Phosphorus (P), % 0 to 0.020
0 to 0.050
Silicon (Si), % 0.1 to 0.5
0.15 to 0.4
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.6 to 0.9
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 0.9 to 1.1
0
Vanadium (V), % 0.18 to 0.25
0
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.5