MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F911 vs. C67400 Bronze

ASTM A182 grade F911 belongs to the iron alloys classification, while C67400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F911 and the bottom bar is C67400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
22 to 28
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
41
Shear Strength, MPa 430
310 to 350
Tensile Strength: Ultimate (UTS), MPa 690
480 to 610
Tensile Strength: Yield (Proof), MPa 500
250 to 370

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 600
130
Melting Completion (Liquidus), °C 1480
890
Melting Onset (Solidus), °C 1440
870
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 26
100
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
23
Electrical Conductivity: Equal Weight (Specific), % IACS 10
26

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 40
48
Embodied Water, L/kg 90
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 650
300 to 660
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 24
17 to 22
Strength to Weight: Bending, points 22
17 to 20
Thermal Diffusivity, mm2/s 6.9
32
Thermal Shock Resistance, points 19
16 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.020
0.5 to 2.0
Boron (B), % 0.00030 to 0.0060
0
Carbon (C), % 0.090 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0
Copper (Cu), % 0
57 to 60
Iron (Fe), % 86.2 to 88.9
0 to 0.35
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0.3 to 0.6
2.0 to 3.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.4
0 to 0.25
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.040 to 0.090
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.1 to 0.5
0.5 to 1.5
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 0.9 to 1.1
0
Vanadium (V), % 0.18 to 0.25
0
Zinc (Zn), % 0
31.1 to 40
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.5