MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F911 vs. C95300 Bronze

ASTM A182 grade F911 belongs to the iron alloys classification, while C95300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F911 and the bottom bar is C95300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
120 to 170
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
14 to 25
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 690
520 to 610
Tensile Strength: Yield (Proof), MPa 500
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 600
220
Melting Completion (Liquidus), °C 1480
1050
Melting Onset (Solidus), °C 1440
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 26
63
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
13
Electrical Conductivity: Equal Weight (Specific), % IACS 10
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 40
52
Embodied Water, L/kg 90
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 650
170 to 420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 24
17 to 21
Strength to Weight: Bending, points 22
17 to 19
Thermal Diffusivity, mm2/s 6.9
17
Thermal Shock Resistance, points 19
19 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.020
9.0 to 11
Boron (B), % 0.00030 to 0.0060
0
Carbon (C), % 0.090 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0
Copper (Cu), % 0
86.5 to 90.2
Iron (Fe), % 86.2 to 88.9
0.8 to 1.5
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.040 to 0.090
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.1 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 0.9 to 1.1
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 1.0