MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F911 vs. S32760 Stainless Steel

Both ASTM A182 grade F911 and S32760 stainless steel are iron alloys. They have 73% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F911 and the bottom bar is S32760 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
250
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
28
Fatigue Strength, MPa 350
450
Poisson's Ratio 0.28
0.27
Reduction in Area, % 46
51
Shear Modulus, GPa 76
80
Shear Strength, MPa 430
550
Tensile Strength: Ultimate (UTS), MPa 690
850
Tensile Strength: Yield (Proof), MPa 500
620

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Mechanical, °C 600
1100
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1440
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
4.1
Embodied Energy, MJ/kg 40
57
Embodied Water, L/kg 90
180

Common Calculations

PREN (Pitting Resistance) 15
42
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
220
Resilience: Unit (Modulus of Resilience), kJ/m3 650
930
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
30
Strength to Weight: Bending, points 22
25
Thermal Diffusivity, mm2/s 6.9
4.0
Thermal Shock Resistance, points 19
23

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.00030 to 0.0060
0
Carbon (C), % 0.090 to 0.13
0 to 0.030
Chromium (Cr), % 8.5 to 9.5
24 to 26
Copper (Cu), % 0
0.5 to 1.0
Iron (Fe), % 86.2 to 88.9
57.6 to 65.8
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
3.0 to 4.0
Nickel (Ni), % 0 to 0.4
6.0 to 8.0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.040 to 0.090
0.2 to 0.3
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0.1 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 0.9 to 1.1
0.5 to 1.0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0