MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F911 vs. S34565 Stainless Steel

Both ASTM A182 grade F911 and S34565 stainless steel are iron alloys. They have 58% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F911 and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
200
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 20
39
Fatigue Strength, MPa 350
400
Poisson's Ratio 0.28
0.28
Reduction in Area, % 46
45
Shear Modulus, GPa 76
80
Shear Strength, MPa 430
610
Tensile Strength: Ultimate (UTS), MPa 690
900
Tensile Strength: Yield (Proof), MPa 500
470

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Maximum Temperature: Mechanical, °C 600
1100
Melting Completion (Liquidus), °C 1480
1420
Melting Onset (Solidus), °C 1440
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
12
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
5.3
Embodied Energy, MJ/kg 40
73
Embodied Water, L/kg 90
210

Common Calculations

PREN (Pitting Resistance) 15
47
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
300
Resilience: Unit (Modulus of Resilience), kJ/m3 650
540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
32
Strength to Weight: Bending, points 22
26
Thermal Diffusivity, mm2/s 6.9
3.2
Thermal Shock Resistance, points 19
22

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.00030 to 0.0060
0
Carbon (C), % 0.090 to 0.13
0 to 0.030
Chromium (Cr), % 8.5 to 9.5
23 to 25
Iron (Fe), % 86.2 to 88.9
43.2 to 51.6
Manganese (Mn), % 0.3 to 0.6
5.0 to 7.0
Molybdenum (Mo), % 0.9 to 1.1
4.0 to 5.0
Nickel (Ni), % 0 to 0.4
16 to 18
Niobium (Nb), % 0.060 to 0.1
0 to 0.1
Nitrogen (N), % 0.040 to 0.090
0.4 to 0.6
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0.1 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 0.9 to 1.1
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0