MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F911 vs. S44660 Stainless Steel

Both ASTM A182 grade F911 and S44660 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F911 and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
210
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 20
20
Fatigue Strength, MPa 350
330
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
81
Shear Strength, MPa 430
410
Tensile Strength: Ultimate (UTS), MPa 690
660
Tensile Strength: Yield (Proof), MPa 500
510

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Mechanical, °C 600
1100
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1440
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
17
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
21
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
4.3
Embodied Energy, MJ/kg 40
61
Embodied Water, L/kg 90
180

Common Calculations

PREN (Pitting Resistance) 15
38
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 650
640
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 6.9
4.5
Thermal Shock Resistance, points 19
21

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.00030 to 0.0060
0
Carbon (C), % 0.090 to 0.13
0 to 0.030
Chromium (Cr), % 8.5 to 9.5
25 to 28
Iron (Fe), % 86.2 to 88.9
60.4 to 71
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
3.0 to 4.0
Nickel (Ni), % 0 to 0.4
1.0 to 3.5
Niobium (Nb), % 0.060 to 0.1
0.2 to 1.0
Nitrogen (N), % 0.040 to 0.090
0 to 0.040
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0.1 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0.2 to 1.0
Tungsten (W), % 0.9 to 1.1
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0