MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F92 vs. 3103 Aluminum

ASTM A182 grade F92 belongs to the iron alloys classification, while 3103 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F92 and the bottom bar is 3103 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
27 to 62
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 22
1.1 to 28
Fatigue Strength, MPa 360
38 to 83
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 440
68 to 130
Tensile Strength: Ultimate (UTS), MPa 690
100 to 220
Tensile Strength: Yield (Proof), MPa 500
39 to 200

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Maximum Temperature: Mechanical, °C 590
190
Melting Completion (Liquidus), °C 1490
660
Melting Onset (Solidus), °C 1450
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 26
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
42
Electrical Conductivity: Equal Weight (Specific), % IACS 10
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 7.9
2.8
Embodied Carbon, kg CO2/kg material 2.8
8.2
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 89
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
2.4 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 650
11 to 280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 24
10 to 22
Strength to Weight: Bending, points 22
18 to 30
Thermal Diffusivity, mm2/s 6.9
64
Thermal Shock Resistance, points 19
4.6 to 9.9

Alloy Composition

Aluminum (Al), % 0 to 0.020
96.3 to 99.1
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0 to 0.1
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 85.8 to 89.1
0 to 0.7
Magnesium (Mg), % 0
0 to 0.3
Manganese (Mn), % 0.3 to 0.6
0.9 to 1.5
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.1
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0 to 0.010
0 to 0.1
Residuals, % 0
0 to 0.15