MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F92 vs. 392.0 Aluminum

ASTM A182 grade F92 belongs to the iron alloys classification, while 392.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F92 and the bottom bar is 392.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
75
Elongation at Break, % 22
0.86
Fatigue Strength, MPa 360
190
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
28
Tensile Strength: Ultimate (UTS), MPa 690
290
Tensile Strength: Yield (Proof), MPa 500
270

Thermal Properties

Latent Heat of Fusion, J/g 260
670
Maximum Temperature: Mechanical, °C 590
170
Melting Completion (Liquidus), °C 1490
670
Melting Onset (Solidus), °C 1450
580
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 26
130
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
25
Electrical Conductivity: Equal Weight (Specific), % IACS 10
90

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 7.9
2.5
Embodied Carbon, kg CO2/kg material 2.8
7.5
Embodied Energy, MJ/kg 40
140
Embodied Water, L/kg 89
950

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
2.4
Resilience: Unit (Modulus of Resilience), kJ/m3 650
490
Stiffness to Weight: Axial, points 14
17
Stiffness to Weight: Bending, points 24
56
Strength to Weight: Axial, points 24
32
Strength to Weight: Bending, points 22
39
Thermal Diffusivity, mm2/s 6.9
60
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 0 to 0.020
73.9 to 80.6
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0
Copper (Cu), % 0
0.4 to 0.8
Iron (Fe), % 85.8 to 89.1
0 to 1.5
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0.3 to 0.6
0.2 to 0.6
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0 to 0.5
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
18 to 20
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0 to 0.010
0 to 0.2
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
0 to 0.5
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.5