MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F92 vs. 7050 Aluminum

ASTM A182 grade F92 belongs to the iron alloys classification, while 7050 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F92 and the bottom bar is 7050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 22
2.2 to 12
Fatigue Strength, MPa 360
130 to 210
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
26
Shear Strength, MPa 440
280 to 330
Tensile Strength: Ultimate (UTS), MPa 690
490 to 570
Tensile Strength: Yield (Proof), MPa 500
390 to 500

Thermal Properties

Latent Heat of Fusion, J/g 260
370
Maximum Temperature: Mechanical, °C 590
190
Melting Completion (Liquidus), °C 1490
630
Melting Onset (Solidus), °C 1450
490
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 26
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
35
Electrical Conductivity: Equal Weight (Specific), % IACS 10
100

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 7.9
3.1
Embodied Carbon, kg CO2/kg material 2.8
8.2
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 89
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
10 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 650
1110 to 1760
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 24
45 to 51
Strength to Weight: Bending, points 22
45 to 50
Thermal Diffusivity, mm2/s 6.9
54
Thermal Shock Resistance, points 19
21 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.020
87.3 to 92.1
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0 to 0.040
Copper (Cu), % 0
2.0 to 2.6
Iron (Fe), % 85.8 to 89.1
0 to 0.15
Magnesium (Mg), % 0
1.9 to 2.6
Manganese (Mn), % 0.3 to 0.6
0 to 0.1
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.12
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.060
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
5.7 to 6.7
Zirconium (Zr), % 0 to 0.010
0.080 to 0.15
Residuals, % 0
0 to 0.15