MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F92 vs. 7108A Aluminum

ASTM A182 grade F92 belongs to the iron alloys classification, while 7108A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F92 and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 22
11 to 13
Fatigue Strength, MPa 360
120 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 440
210
Tensile Strength: Ultimate (UTS), MPa 690
350
Tensile Strength: Yield (Proof), MPa 500
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 260
380
Maximum Temperature: Mechanical, °C 590
210
Melting Completion (Liquidus), °C 1490
630
Melting Onset (Solidus), °C 1450
520
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 26
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
36
Electrical Conductivity: Equal Weight (Specific), % IACS 10
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 2.8
8.3
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 89
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
38 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 650
610 to 640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 24
33 to 34
Strength to Weight: Bending, points 22
38
Thermal Diffusivity, mm2/s 6.9
59
Thermal Shock Resistance, points 19
15 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.020
91.6 to 94.4
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0 to 0.040
Copper (Cu), % 0
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 85.8 to 89.1
0 to 0.3
Magnesium (Mg), % 0
0.7 to 1.5
Manganese (Mn), % 0.3 to 0.6
0 to 0.050
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.030
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
4.8 to 5.8
Zirconium (Zr), % 0 to 0.010
0.15 to 0.25
Residuals, % 0
0 to 0.15