MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F92 vs. ASTM Grade HI Steel

Both ASTM A182 grade F92 and ASTM grade HI steel are iron alloys. They have 64% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F92 and the bottom bar is ASTM grade HI steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
11
Fatigue Strength, MPa 360
150
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
79
Tensile Strength: Ultimate (UTS), MPa 690
550
Tensile Strength: Yield (Proof), MPa 500
270

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Maximum Temperature: Mechanical, °C 590
1100
Melting Completion (Liquidus), °C 1490
1400
Melting Onset (Solidus), °C 1450
1350
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
23
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
4.1
Embodied Energy, MJ/kg 40
59
Embodied Water, L/kg 89
200

Common Calculations

PREN (Pitting Resistance) 14
29
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
52
Resilience: Unit (Modulus of Resilience), kJ/m3 650
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
20
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 6.9
3.9
Thermal Shock Resistance, points 19
12

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0.2 to 0.5
Chromium (Cr), % 8.5 to 9.5
26 to 30
Iron (Fe), % 85.8 to 89.1
46.9 to 59.8
Manganese (Mn), % 0.3 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.3 to 0.6
0 to 0.5
Nickel (Ni), % 0 to 0.4
14 to 18
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 2.0
Sulfur (S), % 0 to 0.010
0 to 0.040
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0