MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F92 vs. AWS E120C-K4

Both ASTM A182 grade F92 and AWS E120C-K4 are iron alloys. They have 89% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F92 and the bottom bar is AWS E120C-K4.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
17
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 690
950
Tensile Strength: Yield (Proof), MPa 500
840

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1450
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
41
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.7
Embodied Energy, MJ/kg 40
23
Embodied Water, L/kg 89
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
160
Resilience: Unit (Modulus of Resilience), kJ/m3 650
1880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
34
Strength to Weight: Bending, points 22
27
Thermal Diffusivity, mm2/s 6.9
11
Thermal Shock Resistance, points 19
28

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0 to 0.15
Chromium (Cr), % 8.5 to 9.5
0.15 to 0.65
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 85.8 to 89.1
92.1 to 98.4
Manganese (Mn), % 0.3 to 0.6
0.75 to 2.3
Molybdenum (Mo), % 0.3 to 0.6
0.25 to 0.65
Nickel (Ni), % 0 to 0.4
0.5 to 2.5
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.8
Sulfur (S), % 0 to 0.010
0 to 0.025
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0 to 0.030
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.5