MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F92 vs. EN 1.0456 Steel

Both ASTM A182 grade F92 and EN 1.0456 steel are iron alloys. They have 89% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F92 and the bottom bar is EN 1.0456 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
120 to 130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
24 to 26
Fatigue Strength, MPa 360
210 to 220
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 440
270 to 280
Tensile Strength: Ultimate (UTS), MPa 690
420 to 450
Tensile Strength: Yield (Proof), MPa 500
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 590
400
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1450
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
48
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.2
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.5
Embodied Energy, MJ/kg 40
20
Embodied Water, L/kg 89
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
93 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 650
220 to 230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
15 to 16
Strength to Weight: Bending, points 22
16 to 17
Thermal Diffusivity, mm2/s 6.9
13
Thermal Shock Resistance, points 19
13 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.020
0.020 to 0.060
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0 to 0.2
Chromium (Cr), % 8.5 to 9.5
0 to 0.3
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 85.8 to 89.1
96.7 to 99.48
Manganese (Mn), % 0.3 to 0.6
0.5 to 1.4
Molybdenum (Mo), % 0.3 to 0.6
0 to 0.1
Nickel (Ni), % 0 to 0.4
0 to 0.3
Niobium (Nb), % 0.040 to 0.090
0 to 0.050
Nitrogen (N), % 0.030 to 0.070
0 to 0.015
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0 to 0.030
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0 to 0.050
Zirconium (Zr), % 0 to 0.010
0