MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F92 vs. EN 1.1165 Cast Steel

Both ASTM A182 grade F92 and EN 1.1165 cast steel are iron alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F92 and the bottom bar is EN 1.1165 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
11 to 20
Fatigue Strength, MPa 360
200 to 380
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 690
600 to 780
Tensile Strength: Yield (Proof), MPa 500
290 to 620

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 590
400
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1450
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
51
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 40
19
Embodied Water, L/kg 89
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
81 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 650
230 to 1010
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
21 to 28
Strength to Weight: Bending, points 22
20 to 24
Thermal Diffusivity, mm2/s 6.9
14
Thermal Shock Resistance, points 19
19 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0.25 to 0.32
Chromium (Cr), % 8.5 to 9.5
0
Iron (Fe), % 85.8 to 89.1
97.2 to 98.6
Manganese (Mn), % 0.3 to 0.6
1.2 to 1.8
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0