MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F92 vs. EN 1.5535 Steel

Both ASTM A182 grade F92 and EN 1.5535 steel are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F92 and the bottom bar is EN 1.5535 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
130 to 180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
11 to 22
Fatigue Strength, MPa 360
210 to 320
Poisson's Ratio 0.28
0.29
Reduction in Area, % 51
62 to 72
Shear Modulus, GPa 76
73
Shear Strength, MPa 440
320 to 370
Tensile Strength: Ultimate (UTS), MPa 690
450 to 1490
Tensile Strength: Yield (Proof), MPa 500
300 to 500

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 590
400
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1450
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
50
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 40
19
Embodied Water, L/kg 89
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
45 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 650
240 to 680
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
16 to 53
Strength to Weight: Bending, points 22
17 to 37
Thermal Diffusivity, mm2/s 6.9
13
Thermal Shock Resistance, points 19
13 to 44

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0.00080 to 0.0050
Carbon (C), % 0.070 to 0.13
0.2 to 0.25
Chromium (Cr), % 8.5 to 9.5
0 to 0.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 85.8 to 89.1
97.6 to 98.9
Manganese (Mn), % 0.3 to 0.6
0.9 to 1.2
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.010
0 to 0.025
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0