MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F92 vs. EN 1.7767 Steel

Both ASTM A182 grade F92 and EN 1.7767 steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F92 and the bottom bar is EN 1.7767 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
20
Fatigue Strength, MPa 360
320 to 340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
74
Shear Strength, MPa 440
420 to 430
Tensile Strength: Ultimate (UTS), MPa 690
670 to 690
Tensile Strength: Yield (Proof), MPa 500
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 590
480
Melting Completion (Liquidus), °C 1490
1470
Melting Onset (Solidus), °C 1450
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
4.5
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
2.4
Embodied Energy, MJ/kg 40
33
Embodied Water, L/kg 89
64

Common Calculations

PREN (Pitting Resistance) 14
6.4
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 650
570 to 650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 6.9
11
Thermal Shock Resistance, points 19
19 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0.1 to 0.15
Chromium (Cr), % 8.5 to 9.5
2.8 to 3.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 85.8 to 89.1
93.8 to 95.8
Manganese (Mn), % 0.3 to 0.6
0.3 to 0.6
Molybdenum (Mo), % 0.3 to 0.6
0.9 to 1.1
Nickel (Ni), % 0 to 0.4
0 to 0.25
Niobium (Nb), % 0.040 to 0.090
0 to 0.070
Nitrogen (N), % 0.030 to 0.070
0 to 0.012
Phosphorus (P), % 0 to 0.020
0 to 0.015
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.010
0 to 0.0050
Titanium (Ti), % 0 to 0.010
0 to 0.030
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0.2 to 0.3
Zirconium (Zr), % 0 to 0.010
0