MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F92 vs. EN AC-43300 Aluminum

ASTM A182 grade F92 belongs to the iron alloys classification, while EN AC-43300 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F92 and the bottom bar is EN AC-43300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
91 to 94
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 22
3.4 to 6.7
Fatigue Strength, MPa 360
76 to 77
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 690
280 to 290
Tensile Strength: Yield (Proof), MPa 500
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 260
540
Maximum Temperature: Mechanical, °C 590
170
Melting Completion (Liquidus), °C 1490
600
Melting Onset (Solidus), °C 1450
590
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 26
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
40
Electrical Conductivity: Equal Weight (Specific), % IACS 10
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 7.9
2.5
Embodied Carbon, kg CO2/kg material 2.8
7.9
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 89
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
9.1 to 17
Resilience: Unit (Modulus of Resilience), kJ/m3 650
300 to 370
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 24
31 to 32
Strength to Weight: Bending, points 22
37 to 38
Thermal Diffusivity, mm2/s 6.9
59
Thermal Shock Resistance, points 19
13 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.020
88.9 to 90.8
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 85.8 to 89.1
0 to 0.19
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0.3 to 0.6
0 to 0.1
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
9.0 to 10
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.15
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
0 to 0.070
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.1