MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F92 vs. SAE-AISI 1023 Steel

Both ASTM A182 grade F92 and SAE-AISI 1023 steel are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F92 and the bottom bar is SAE-AISI 1023 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
130 to 140
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
17 to 29
Fatigue Strength, MPa 360
180 to 270
Poisson's Ratio 0.28
0.29
Reduction in Area, % 51
46 to 56
Shear Modulus, GPa 76
73
Shear Strength, MPa 440
280 to 300
Tensile Strength: Ultimate (UTS), MPa 690
430 to 480
Tensile Strength: Yield (Proof), MPa 500
240 to 410

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 590
400
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1450
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
53
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 40
18
Embodied Water, L/kg 89
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
77 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 650
150 to 450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
15 to 17
Strength to Weight: Bending, points 22
16 to 17
Thermal Diffusivity, mm2/s 6.9
14
Thermal Shock Resistance, points 19
14 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0.2 to 0.25
Chromium (Cr), % 8.5 to 9.5
0
Iron (Fe), % 85.8 to 89.1
99.06 to 99.5
Manganese (Mn), % 0.3 to 0.6
0.3 to 0.6
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0 to 0.050
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0