MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F92 vs. C36200 Brass

ASTM A182 grade F92 belongs to the iron alloys classification, while C36200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F92 and the bottom bar is C36200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 22
20 to 53
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
39
Shear Strength, MPa 440
210 to 240
Tensile Strength: Ultimate (UTS), MPa 690
340 to 420
Tensile Strength: Yield (Proof), MPa 500
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 260
170
Maximum Temperature: Mechanical, °C 590
120
Melting Completion (Liquidus), °C 1490
900
Melting Onset (Solidus), °C 1450
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 26
120
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
26
Electrical Conductivity: Equal Weight (Specific), % IACS 10
28

Otherwise Unclassified Properties

Base Metal Price, % relative 11
23
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 40
45
Embodied Water, L/kg 89
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
74 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 650
89 to 630
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 24
11 to 14
Strength to Weight: Bending, points 22
13 to 15
Thermal Diffusivity, mm2/s 6.9
37
Thermal Shock Resistance, points 19
11 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0
Copper (Cu), % 0
60 to 63
Iron (Fe), % 85.8 to 89.1
0 to 0.15
Lead (Pb), % 0
3.5 to 4.5
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
32.4 to 36.5
Zirconium (Zr), % 0 to 0.010
0