MakeItFrom.com
Menu (ESC)

ASTM A182 Grade FR vs. S32760 Stainless Steel

Both ASTM A182 grade FR and S32760 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 65% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade FR and the bottom bar is S32760 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
250
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 28
28
Fatigue Strength, MPa 270
450
Poisson's Ratio 0.29
0.27
Reduction in Area, % 43
51
Shear Modulus, GPa 72
80
Shear Strength, MPa 320
550
Tensile Strength: Ultimate (UTS), MPa 490
850
Tensile Strength: Yield (Proof), MPa 360
620

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 410
1100
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 3.3
22
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.6
4.1
Embodied Energy, MJ/kg 21
57
Embodied Water, L/kg 52
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
220
Resilience: Unit (Modulus of Resilience), kJ/m3 340
930
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 17
30
Strength to Weight: Bending, points 17
25
Thermal Diffusivity, mm2/s 14
4.0
Thermal Shock Resistance, points 14
23

Alloy Composition

Carbon (C), % 0 to 0.2
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0.75 to 1.3
0.5 to 1.0
Iron (Fe), % 95.2 to 97.3
57.6 to 65.8
Manganese (Mn), % 0.4 to 1.1
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 1.6 to 2.2
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.010
Tungsten (W), % 0
0.5 to 1.0