MakeItFrom.com
Menu (ESC)

ASTM A204 Steel vs. 4015 Aluminum

ASTM A204 steel belongs to the iron alloys classification, while 4015 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A204 steel and the bottom bar is 4015 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 180
35 to 70
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 18 to 22
1.1 to 23
Fatigue Strength, MPa 200 to 220
46 to 71
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 330 to 360
82 to 120
Tensile Strength: Ultimate (UTS), MPa 520 to 590
130 to 220
Tensile Strength: Yield (Proof), MPa 290 to 330
50 to 200

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 410
160
Melting Completion (Liquidus), °C 1470
640
Melting Onset (Solidus), °C 1420 to 1430
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 52
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
41
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
130

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 1.5
8.1
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 47
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 95
2.4 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 290
18 to 290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 18 to 21
13 to 22
Strength to Weight: Bending, points 18 to 20
21 to 30
Thermal Diffusivity, mm2/s 14
66
Thermal Shock Resistance, points 15 to 17
5.7 to 9.7