ASTM A210 Steel vs. EN 2.4878 Nickel
ASTM A210 steel belongs to the iron alloys classification, while EN 2.4878 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is ASTM A210 steel and the bottom bar is EN 2.4878 nickel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
200 |
Elongation at Break, % | 34 | |
13 to 17 |
Fatigue Strength, MPa | 230 to 250 | |
400 to 410 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
78 |
Shear Strength, MPa | 320 to 360 | |
750 to 760 |
Tensile Strength: Ultimate (UTS), MPa | 470 to 540 | |
1210 to 1250 |
Tensile Strength: Yield (Proof), MPa | 290 to 310 | |
740 to 780 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
330 |
Maximum Temperature: Mechanical, °C | 400 | |
1030 |
Melting Completion (Liquidus), °C | 1460 to 1470 | |
1370 |
Melting Onset (Solidus), °C | 1420 | |
1320 |
Specific Heat Capacity, J/kg-K | 470 | |
460 |
Thermal Conductivity, W/m-K | 52 to 53 | |
11 |
Thermal Expansion, µm/m-K | 12 | |
12 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.8 | |
80 |
Density, g/cm3 | 7.9 | |
8.3 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
10 |
Embodied Energy, MJ/kg | 18 | |
150 |
Embodied Water, L/kg | 45 to 46 | |
370 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 140 to 160 | |
150 to 180 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 230 to 250 | |
1370 to 1540 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 17 to 19 | |
41 to 42 |
Strength to Weight: Bending, points | 17 to 19 | |
31 |
Thermal Diffusivity, mm2/s | 14 | |
2.8 |
Thermal Shock Resistance, points | 15 to 17 | |
37 to 39 |