ASTM A210 Steel vs. SAE-AISI 4615 Steel
Both ASTM A210 steel and SAE-AISI 4615 steel are iron alloys.
For each property being compared, the top bar is ASTM A210 steel and the bottom bar is SAE-AISI 4615 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 140 to 160 | |
150 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 34 | |
27 |
Fatigue Strength, MPa | 230 to 250 | |
260 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
73 |
Shear Strength, MPa | 320 to 360 | |
310 |
Tensile Strength: Ultimate (UTS), MPa | 470 to 540 | |
480 |
Tensile Strength: Yield (Proof), MPa | 290 to 310 | |
350 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Maximum Temperature: Mechanical, °C | 400 | |
410 |
Melting Completion (Liquidus), °C | 1460 to 1470 | |
1460 |
Melting Onset (Solidus), °C | 1420 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 52 to 53 | |
47 |
Thermal Expansion, µm/m-K | 12 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.0 | |
7.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.0 to 8.1 | |
8.4 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.8 | |
3.2 |
Density, g/cm3 | 7.9 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
1.6 |
Embodied Energy, MJ/kg | 18 | |
22 |
Embodied Water, L/kg | 45 to 46 | |
50 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 140 to 160 | |
120 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 230 to 250 | |
320 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 17 to 19 | |
17 |
Strength to Weight: Bending, points | 17 to 19 | |
17 |
Thermal Diffusivity, mm2/s | 14 | |
13 |
Thermal Shock Resistance, points | 15 to 17 | |
16 |