MakeItFrom.com
Menu (ESC)

ASTM A210 Steel vs. C85900 Brass

ASTM A210 steel belongs to the iron alloys classification, while C85900 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A210 steel and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 160
85
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 34
30
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 470 to 540
460
Tensile Strength: Yield (Proof), MPa 290 to 310
190

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
130
Melting Completion (Liquidus), °C 1460 to 1470
830
Melting Onset (Solidus), °C 1420
790
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 52 to 53
89
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
25
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0 to 8.1
28

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
24
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.4
2.9
Embodied Energy, MJ/kg 18
49
Embodied Water, L/kg 45 to 46
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 250
170
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 17 to 19
16
Strength to Weight: Bending, points 17 to 19
17
Thermal Diffusivity, mm2/s 14
29
Thermal Shock Resistance, points 15 to 17
16