MakeItFrom.com
Menu (ESC)

ASTM A227 Spring Steel vs. C82500 Copper

ASTM A227 spring steel belongs to the iron alloys classification, while C82500 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A227 spring steel and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 12
1.0 to 20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
45
Tensile Strength: Ultimate (UTS), MPa 1720 to 2220
550 to 1100
Tensile Strength: Yield (Proof), MPa 1430 to 1850
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Maximum Temperature: Mechanical, °C 400
280
Melting Completion (Liquidus), °C 1450
980
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 52
130
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
20
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
21

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.4
10
Embodied Energy, MJ/kg 19
160
Embodied Water, L/kg 46
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 260
11 to 94
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 61 to 79
18 to 35
Strength to Weight: Bending, points 41 to 48
17 to 27
Thermal Diffusivity, mm2/s 14
38
Thermal Shock Resistance, points 55 to 71
19 to 38

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Carbon (C), % 0.45 to 0.85
0
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 0
95.3 to 97.8
Iron (Fe), % 97.4 to 99.1
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.3 to 1.3
0
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.15 to 0.35
0.2 to 0.35
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5

Comparable Variants