MakeItFrom.com
Menu (ESC)

ASTM A228 Music Wire vs. EN 1.5525 Steel

Both ASTM A228 music wire and EN 1.5525 steel are iron alloys. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A228 music wire and the bottom bar is EN 1.5525 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 710
130 to 180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12
11 to 21
Fatigue Strength, MPa 1280
210 to 310
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Shear Strength, MPa 1470
310 to 350
Tensile Strength: Ultimate (UTS), MPa 2450
440 to 1440
Tensile Strength: Yield (Proof), MPa 2050
300 to 490

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
50
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
1.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 19
19
Embodied Water, L/kg 45
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
44 to 240
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 87
16 to 51
Strength to Weight: Bending, points 52
16 to 36
Thermal Diffusivity, mm2/s 13
13
Thermal Shock Resistance, points 79
13 to 42

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0.7 to 1.0
0.18 to 0.23
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 98 to 99
97.7 to 98.9
Manganese (Mn), % 0.2 to 0.6
0.9 to 1.2
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0.1 to 0.3
0 to 0.3
Sulfur (S), % 0 to 0.030
0 to 0.025