MakeItFrom.com
Menu (ESC)

ASTM A228 Music Wire vs. C51000 Bronze

ASTM A228 music wire belongs to the iron alloys classification, while C51000 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A228 music wire and the bottom bar is C51000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12
2.7 to 64
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
42
Shear Strength, MPa 1470
250 to 460
Tensile Strength: Ultimate (UTS), MPa 2450
330 to 780
Tensile Strength: Yield (Proof), MPa 2050
130 to 750

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 400
190
Melting Completion (Liquidus), °C 1450
1050
Melting Onset (Solidus), °C 1410
960
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 49
77
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
18
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
18

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
33
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.4
3.1
Embodied Energy, MJ/kg 19
50
Embodied Water, L/kg 45
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
7.0 to 490
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 87
10 to 25
Strength to Weight: Bending, points 52
12 to 21
Thermal Diffusivity, mm2/s 13
23
Thermal Shock Resistance, points 79
12 to 28

Alloy Composition

Carbon (C), % 0.7 to 1.0
0
Copper (Cu), % 0
92.9 to 95.5
Iron (Fe), % 98 to 99
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.2 to 0.6
0
Phosphorus (P), % 0 to 0.025
0.030 to 0.35
Silicon (Si), % 0.1 to 0.3
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
4.5 to 5.8
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5