MakeItFrom.com
Menu (ESC)

ASTM A228 Music Wire vs. S43037 Stainless Steel

Both ASTM A228 music wire and S43037 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A228 music wire and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 710
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12
25
Fatigue Strength, MPa 1280
160
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
77
Shear Strength, MPa 1470
260
Tensile Strength: Ultimate (UTS), MPa 2450
410
Tensile Strength: Yield (Proof), MPa 2050
230

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
880
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
25
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
2.3
Embodied Energy, MJ/kg 19
32
Embodied Water, L/kg 45
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
88
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 87
15
Strength to Weight: Bending, points 52
16
Thermal Diffusivity, mm2/s 13
6.7
Thermal Shock Resistance, points 79
14

Alloy Composition

Carbon (C), % 0.7 to 1.0
0 to 0.030
Chromium (Cr), % 0
16 to 19
Iron (Fe), % 98 to 99
77.9 to 83.9
Manganese (Mn), % 0.2 to 0.6
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.1 to 0.3
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.1 to 1.0