MakeItFrom.com
Menu (ESC)

ASTM A229 Spring Steel vs. 4007 Aluminum

ASTM A229 spring steel belongs to the iron alloys classification, while 4007 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A229 spring steel and the bottom bar is 4007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 490 to 550
32 to 44
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 14
5.1 to 23
Fatigue Strength, MPa 710 to 790
46 to 88
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
27
Shear Strength, MPa 1020 to 1140
80 to 90
Tensile Strength: Ultimate (UTS), MPa 1690 to 1890
130 to 160
Tensile Strength: Yield (Proof), MPa 1100 to 1230
50 to 120

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1410
590
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 50
170
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
42
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
140

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 1.4
8.1
Embodied Energy, MJ/kg 19
150
Embodied Water, L/kg 46
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 230
7.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 3260 to 4080
18 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 60 to 67
12 to 15
Strength to Weight: Bending, points 40 to 43
20 to 23
Thermal Diffusivity, mm2/s 14
67
Thermal Shock Resistance, points 54 to 60
5.5 to 6.7

Alloy Composition

Aluminum (Al), % 0
94.1 to 97.6
Carbon (C), % 0.55 to 0.85
0
Chromium (Cr), % 0
0.050 to 0.25
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 97.5 to 99
0.4 to 1.0
Magnesium (Mg), % 0
0 to 0.2
Manganese (Mn), % 0.3 to 1.2
0.8 to 1.5
Nickel (Ni), % 0
0.15 to 0.7
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.15 to 0.35
1.0 to 1.7
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15

Comparable Variants