MakeItFrom.com
Menu (ESC)

ASTM A229 Spring Steel vs. 6182 Aluminum

ASTM A229 spring steel belongs to the iron alloys classification, while 6182 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A229 spring steel and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 14
6.8 to 13
Fatigue Strength, MPa 710 to 790
63 to 99
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
26
Shear Strength, MPa 1020 to 1140
140 to 190
Tensile Strength: Ultimate (UTS), MPa 1690 to 1890
230 to 320
Tensile Strength: Yield (Proof), MPa 1100 to 1230
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
190
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 50
160
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
40
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
130

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.4
8.4
Embodied Energy, MJ/kg 19
150
Embodied Water, L/kg 46
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 230
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 3260 to 4080
110 to 520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 60 to 67
23 to 32
Strength to Weight: Bending, points 40 to 43
30 to 38
Thermal Diffusivity, mm2/s 14
65
Thermal Shock Resistance, points 54 to 60
10 to 14

Alloy Composition

Aluminum (Al), % 0
95 to 97.9
Carbon (C), % 0.55 to 0.85
0
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 97.5 to 99
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.2
Manganese (Mn), % 0.3 to 1.2
0.5 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.15 to 0.35
0.9 to 1.3
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.15

Comparable Variants