MakeItFrom.com
Menu (ESC)

ASTM A229 Spring Steel vs. EN 1.0590 Steel

Both ASTM A229 spring steel and EN 1.0590 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A229 spring steel and the bottom bar is EN 1.0590 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 490 to 550
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 14
19
Fatigue Strength, MPa 710 to 790
290
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Shear Strength, MPa 1020 to 1140
380
Tensile Strength: Ultimate (UTS), MPa 1690 to 1890
620
Tensile Strength: Yield (Proof), MPa 1100 to 1230
430

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
51
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.6
Embodied Energy, MJ/kg 19
22
Embodied Water, L/kg 46
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 230
110
Resilience: Unit (Modulus of Resilience), kJ/m3 3260 to 4080
480
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 60 to 67
22
Strength to Weight: Bending, points 40 to 43
21
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 54 to 60
20

Alloy Composition

Carbon (C), % 0.55 to 0.85
0 to 0.24
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 97.5 to 99
96.4 to 100
Manganese (Mn), % 0.3 to 1.2
0 to 1.8
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0 to 0.6
Sulfur (S), % 0 to 0.050
0 to 0.040
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.15