ASTM A229 Spring Steel vs. EN 1.5520 Steel
Both ASTM A229 spring steel and EN 1.5520 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.
For each property being compared, the top bar is ASTM A229 spring steel and the bottom bar is EN 1.5520 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 490 to 550 | |
120 to 170 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 14 | |
11 to 21 |
Fatigue Strength, MPa | 710 to 790 | |
210 to 300 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 72 | |
73 |
Shear Strength, MPa | 1020 to 1140 | |
290 to 340 |
Tensile Strength: Ultimate (UTS), MPa | 1690 to 1890 | |
410 to 1410 |
Tensile Strength: Yield (Proof), MPa | 1100 to 1230 | |
300 to 480 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Maximum Temperature: Mechanical, °C | 400 | |
400 |
Melting Completion (Liquidus), °C | 1450 | |
1460 |
Melting Onset (Solidus), °C | 1410 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 50 | |
50 |
Thermal Expansion, µm/m-K | 12 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.2 | |
7.1 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.3 | |
8.2 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.8 | |
1.9 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
1.4 |
Embodied Energy, MJ/kg | 19 | |
19 |
Embodied Water, L/kg | 46 | |
48 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 200 to 230 | |
42 to 230 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 3260 to 4080 | |
240 to 600 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 60 to 67 | |
15 to 50 |
Strength to Weight: Bending, points | 40 to 43 | |
16 to 36 |
Thermal Diffusivity, mm2/s | 14 | |
13 |
Thermal Shock Resistance, points | 54 to 60 | |
12 to 41 |
Alloy Composition
Boron (B), % | 0 | |
0.00080 to 0.0050 |
Carbon (C), % | 0.55 to 0.85 | |
0.15 to 0.2 |
Chromium (Cr), % | 0 | |
0 to 0.3 |
Copper (Cu), % | 0 | |
0 to 0.25 |
Iron (Fe), % | 97.5 to 99 | |
97.7 to 98.9 |
Manganese (Mn), % | 0.3 to 1.2 | |
0.9 to 1.2 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.025 |
Silicon (Si), % | 0.15 to 0.35 | |
0 to 0.3 |
Sulfur (S), % | 0 to 0.050 | |
0 to 0.025 |