MakeItFrom.com
Menu (ESC)

ASTM A229 Spring Steel vs. Grade 18 Titanium

ASTM A229 spring steel belongs to the iron alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A229 spring steel and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 14
11 to 17
Fatigue Strength, MPa 710 to 790
330 to 480
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 72
40
Shear Strength, MPa 1020 to 1140
420 to 590
Tensile Strength: Ultimate (UTS), MPa 1690 to 1890
690 to 980
Tensile Strength: Yield (Proof), MPa 1100 to 1230
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
330
Melting Completion (Liquidus), °C 1450
1640
Melting Onset (Solidus), °C 1410
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 50
8.3
Thermal Expansion, µm/m-K 12
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
41
Embodied Energy, MJ/kg 19
670
Embodied Water, L/kg 46
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 230
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 3260 to 4080
1380 to 3110
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 60 to 67
43 to 61
Strength to Weight: Bending, points 40 to 43
39 to 49
Thermal Diffusivity, mm2/s 14
3.4
Thermal Shock Resistance, points 54 to 60
47 to 67

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.55 to 0.85
0 to 0.080
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 97.5 to 99
0 to 0.25
Manganese (Mn), % 0.3 to 1.2
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4

Comparable Variants