MakeItFrom.com
Menu (ESC)

ASTM A232 Spring Steel vs. EN 2.4665 Nickel

ASTM A232 spring steel belongs to the iron alloys classification, while EN 2.4665 nickel belongs to the nickel alloys. They have a modest 20% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A232 spring steel and the bottom bar is EN 2.4665 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 14
34
Fatigue Strength, MPa 1040
220
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
81
Shear Strength, MPa 1090
520
Tensile Strength: Ultimate (UTS), MPa 1790
790
Tensile Strength: Yield (Proof), MPa 1610
300

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 420
990
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 52
12
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
55
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 2.0
9.2
Embodied Energy, MJ/kg 28
130
Embodied Water, L/kg 51
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 64
26
Strength to Weight: Bending, points 42
22
Thermal Diffusivity, mm2/s 14
3.2
Thermal Shock Resistance, points 53
20

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0.48 to 0.53
0.050 to 0.15
Chromium (Cr), % 0.8 to 1.1
20.5 to 23
Cobalt (Co), % 0
0.5 to 2.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 96.8 to 97.7
17 to 20
Manganese (Mn), % 0.7 to 0.9
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
40.3 to 53.8
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0.15 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.035
0 to 0.015
Tungsten (W), % 0
0.2 to 1.0
Vanadium (V), % 0.15 to 0.3
0