MakeItFrom.com
Menu (ESC)

ASTM A242 HSLA Steel vs. AISI 348 Stainless Steel

Both ASTM A242 HSLA steel and AISI 348 stainless steel are iron alloys. They have 69% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A242 HSLA steel and the bottom bar is AISI 348 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
41
Fatigue Strength, MPa 230
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 310
400
Tensile Strength: Ultimate (UTS), MPa 490
580
Tensile Strength: Yield (Proof), MPa 330
230

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
940
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 52
16
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
19
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
3.7
Embodied Energy, MJ/kg 18
54
Embodied Water, L/kg 46
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
190
Resilience: Unit (Modulus of Resilience), kJ/m3 290
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 14
4.2
Thermal Shock Resistance, points 14
13

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 0
17 to 19
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0.2 to 0.45
0
Iron (Fe), % 98.2 to 99.8
63.8 to 74
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 0
9.0 to 13
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.15
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0 to 0.050
0 to 0.030
Tantalum (Ta), % 0
0 to 0.1