MakeItFrom.com
Menu (ESC)

ASTM A242 HSLA Steel vs. EN 1.1181 Steel

Both ASTM A242 HSLA steel and EN 1.1181 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A242 HSLA steel and the bottom bar is EN 1.1181 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
160 to 180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
19 to 20
Fatigue Strength, MPa 230
190 to 260
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 310
350 to 390
Tensile Strength: Ultimate (UTS), MPa 490
560 to 620
Tensile Strength: Yield (Proof), MPa 330
280 to 380

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
42
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
2.1
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 18
19
Embodied Water, L/kg 46
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 290
210 to 380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
20 to 22
Strength to Weight: Bending, points 17
19 to 21
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 14
19 to 21

Alloy Composition

Carbon (C), % 0 to 0.15
0.32 to 0.39
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 0.2 to 0.45
0
Iron (Fe), % 98.2 to 99.8
97.4 to 99.18
Manganese (Mn), % 0 to 1.0
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.15
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0 to 0.050
0 to 0.035