MakeItFrom.com
Menu (ESC)

ASTM A266 Carbon Steel vs. S34565 Stainless Steel

Both ASTM A266 carbon steel and S34565 stainless steel are iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A266 carbon steel and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
200
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 21 to 26
39
Fatigue Strength, MPa 170 to 200
400
Poisson's Ratio 0.29
0.28
Reduction in Area, % 34 to 43
45
Shear Modulus, GPa 73
80
Shear Strength, MPa 320 to 380
610
Tensile Strength: Ultimate (UTS), MPa 500 to 600
900
Tensile Strength: Yield (Proof), MPa 230 to 290
470

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51 to 52
12
Thermal Expansion, µm/m-K 12
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1 to 8.2
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
28
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
5.3
Embodied Energy, MJ/kg 18 to 19
73
Embodied Water, L/kg 46 to 47
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
300
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 230
540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18 to 21
32
Strength to Weight: Bending, points 18 to 20
26
Thermal Diffusivity, mm2/s 14
3.2
Thermal Shock Resistance, points 16 to 19
22