MakeItFrom.com
Menu (ESC)

ASTM A285 Carbon Steel vs. C96600 Copper

ASTM A285 carbon steel belongs to the iron alloys classification, while C96600 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A285 carbon steel and the bottom bar is C96600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 30 to 34
7.0
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
52
Tensile Strength: Ultimate (UTS), MPa 380 to 450
760
Tensile Strength: Yield (Proof), MPa 190 to 230
480

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Maximum Temperature: Mechanical, °C 400
280
Melting Completion (Liquidus), °C 1470
1180
Melting Onset (Solidus), °C 1420 to 1430
1100
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 53
30
Thermal Expansion, µm/m-K 12
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
65
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.4
7.0
Embodied Energy, MJ/kg 18
100
Embodied Water, L/kg 46
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
47
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 150
830
Stiffness to Weight: Axial, points 13
8.7
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 13 to 16
24
Strength to Weight: Bending, points 15 to 17
21
Thermal Diffusivity, mm2/s 14
8.4
Thermal Shock Resistance, points 12 to 14
25