MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 1 vs. ASTM A242 HSLA Steel

Both ASTM A356 grade 1 and ASTM A242 HSLA steel are iron alloys. Their average alloy composition is basically identical. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 1 and the bottom bar is ASTM A242 HSLA steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
22
Fatigue Strength, MPa 200
230
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 550
490
Tensile Strength: Yield (Proof), MPa 280
330

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
52
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
1.9
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 18
18
Embodied Water, L/kg 45
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
95
Resilience: Unit (Modulus of Resilience), kJ/m3 210
290
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
17
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 18
14

Alloy Composition

Carbon (C), % 0 to 0.35
0 to 0.15
Copper (Cu), % 0
0.2 to 0.45
Iron (Fe), % 98.3 to 100
98.2 to 99.8
Manganese (Mn), % 0 to 0.7
0 to 1.0
Phosphorus (P), % 0 to 0.035
0 to 0.15
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0 to 0.050