MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 2 vs. EN 1.7703 Steel

Both ASTM A356 grade 2 and EN 1.7703 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 2 and the bottom bar is EN 1.7703 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
20
Fatigue Strength, MPa 200
320 to 340
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
74
Tensile Strength: Ultimate (UTS), MPa 510
670 to 690
Tensile Strength: Yield (Proof), MPa 270
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
460
Melting Completion (Liquidus), °C 1470
1470
Melting Onset (Solidus), °C 1430
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
4.2
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.5
2.5
Embodied Energy, MJ/kg 20
35
Embodied Water, L/kg 47
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 190
570 to 650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 15
19 to 20

Alloy Composition

Carbon (C), % 0 to 0.25
0.11 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 97.7 to 99.55
94.6 to 96.4
Manganese (Mn), % 0 to 0.7
0.3 to 0.6
Molybdenum (Mo), % 0.45 to 0.65
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.035
0 to 0.015
Silicon (Si), % 0 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.030
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35