MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 2 vs. EN 1.7725 Steel

Both ASTM A356 grade 2 and EN 1.7725 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 2 and the bottom bar is EN 1.7725 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
250 to 300
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
14
Fatigue Strength, MPa 200
390 to 550
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 510
830 to 1000
Tensile Strength: Yield (Proof), MPa 270
610 to 860

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
440
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
2.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.8
Embodied Energy, MJ/kg 20
24
Embodied Water, L/kg 47
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 190
980 to 1940
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
29 to 35
Strength to Weight: Bending, points 18
25 to 28
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 15
24 to 29

Alloy Composition

Carbon (C), % 0 to 0.25
0.27 to 0.34
Chromium (Cr), % 0
1.3 to 1.7
Iron (Fe), % 97.7 to 99.55
95.7 to 97.5
Manganese (Mn), % 0 to 0.7
0.6 to 1.0
Molybdenum (Mo), % 0.45 to 0.65
0.3 to 0.5
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0 to 0.6
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0
0.050 to 0.15