MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 2 vs. C73100 Nickel Silver

ASTM A356 grade 2 belongs to the iron alloys classification, while C73100 nickel silver belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 2 and the bottom bar is C73100 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
3.4 to 8.0
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 510
450 to 640
Tensile Strength: Yield (Proof), MPa 270
420 to 590

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1470
1030
Melting Onset (Solidus), °C 1430
1000
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 51
35
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
28
Density, g/cm3 7.9
8.4
Embodied Carbon, kg CO2/kg material 1.5
3.0
Embodied Energy, MJ/kg 20
49
Embodied Water, L/kg 47
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
21 to 35
Resilience: Unit (Modulus of Resilience), kJ/m3 190
790 to 1560
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18
15 to 21
Strength to Weight: Bending, points 18
15 to 20
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 15
15 to 21

Alloy Composition

Carbon (C), % 0 to 0.25
0
Copper (Cu), % 0
70.8 to 78
Iron (Fe), % 97.7 to 99.55
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.7
0 to 0.5
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0
4.0 to 6.0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
18 to 22
Residuals, % 0
0 to 0.5