MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 5 vs. Grade 38 Titanium

ASTM A356 grade 5 belongs to the iron alloys classification, while grade 38 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 5 and the bottom bar is grade 38 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
11
Fatigue Strength, MPa 230
530
Poisson's Ratio 0.29
0.32
Reduction in Area, % 39
29
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 550
1000
Tensile Strength: Yield (Proof), MPa 310
910

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 420
330
Melting Completion (Liquidus), °C 1470
1620
Melting Onset (Solidus), °C 1420
1570
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 49
8.0
Thermal Expansion, µm/m-K 13
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
36
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.5
35
Embodied Energy, MJ/kg 20
560
Embodied Water, L/kg 49
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
3840
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 20
62
Strength to Weight: Bending, points 19
49
Thermal Diffusivity, mm2/s 13
3.2
Thermal Shock Resistance, points 16
72

Alloy Composition

Aluminum (Al), % 0
3.5 to 4.5
Carbon (C), % 0 to 0.25
0 to 0.080
Chromium (Cr), % 0.4 to 0.7
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 97.1 to 99.2
1.2 to 1.8
Manganese (Mn), % 0 to 0.7
0
Molybdenum (Mo), % 0.4 to 0.6
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
89.9 to 93.1
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4