MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 5 vs. SAE-AISI 1042 Steel

Both ASTM A356 grade 5 and SAE-AISI 1042 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 5 and the bottom bar is SAE-AISI 1042 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
180 to 200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
14 to 18
Fatigue Strength, MPa 230
230 to 370
Poisson's Ratio 0.29
0.29
Reduction in Area, % 39
39 to 50
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 550
620 to 700
Tensile Strength: Yield (Proof), MPa 310
340 to 580

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 420
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
52
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.4
Embodied Energy, MJ/kg 20
18
Embodied Water, L/kg 49
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
87 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 250
320 to 900
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
22 to 25
Strength to Weight: Bending, points 19
21 to 22
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 16
20 to 22

Alloy Composition

Carbon (C), % 0 to 0.25
0.4 to 0.47
Chromium (Cr), % 0.4 to 0.7
0
Iron (Fe), % 97.1 to 99.2
98.5 to 99
Manganese (Mn), % 0 to 0.7
0.6 to 0.9
Molybdenum (Mo), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0 to 0.050