MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 6 vs. Grade 15 Titanium

ASTM A356 grade 6 belongs to the iron alloys classification, while grade 15 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 6 and the bottom bar is grade 15 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
20
Fatigue Strength, MPa 250
290
Poisson's Ratio 0.29
0.32
Reduction in Area, % 39
28
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 550
540
Tensile Strength: Yield (Proof), MPa 350
430

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 430
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 41
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.6
32
Embodied Energy, MJ/kg 21
520
Embodied Water, L/kg 53
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
100
Resilience: Unit (Modulus of Resilience), kJ/m3 320
870
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 20
33
Strength to Weight: Bending, points 19
33
Thermal Diffusivity, mm2/s 11
8.4
Thermal Shock Resistance, points 16
41

Alloy Composition

Carbon (C), % 0 to 0.2
0 to 0.080
Chromium (Cr), % 1.0 to 1.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96.2 to 98.1
0 to 0.3
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.035
0
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.2 to 99.56
Residuals, % 0
0 to 0.4