MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 8 vs. EN 1.7779 Steel

Both ASTM A356 grade 8 and EN 1.7779 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 8 and the bottom bar is EN 1.7779 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
240
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
16
Fatigue Strength, MPa 270
430
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 630
810
Tensile Strength: Yield (Proof), MPa 390
660

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Maximum Temperature: Mechanical, °C 440
470
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 38
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
4.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.0
2.8
Embodied Energy, MJ/kg 26
41
Embodied Water, L/kg 55
64

Common Calculations

PREN (Pitting Resistance) 4.7
5.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 390
1150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
29
Strength to Weight: Bending, points 21
25
Thermal Diffusivity, mm2/s 10
11
Thermal Shock Resistance, points 18
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.2
0.17 to 0.23
Chromium (Cr), % 1.0 to 1.5
3.0 to 3.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 95.4 to 97.4
93.8 to 95.4
Manganese (Mn), % 0.5 to 0.9
0.3 to 0.5
Molybdenum (Mo), % 0.9 to 1.2
0.5 to 0.6
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0.2 to 0.6
0.15 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.010
Vanadium (V), % 0.050 to 0.15
0.45 to 0.55