MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 8 vs. EN 1.8867 Steel

Both ASTM A356 grade 8 and EN 1.8867 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 8 and the bottom bar is EN 1.8867 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
25
Fatigue Strength, MPa 270
260
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 630
540
Tensile Strength: Yield (Proof), MPa 390
360

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 440
410
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 38
48
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
2.4
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.0
1.6
Embodied Energy, MJ/kg 26
21
Embodied Water, L/kg 55
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 390
340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 21
19
Thermal Diffusivity, mm2/s 10
13
Thermal Shock Resistance, points 18
16

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.2
0 to 0.16
Chromium (Cr), % 1.0 to 1.5
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 95.4 to 97.4
96.3 to 100
Manganese (Mn), % 0.5 to 0.9
0 to 1.5
Molybdenum (Mo), % 0.9 to 1.2
0 to 0.25
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0.2 to 0.6
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0.050 to 0.15
0 to 0.060
Zirconium (Zr), % 0
0 to 0.050