MakeItFrom.com
Menu (ESC)

ASTM A356 Grade 8 vs. CC383H Copper-nickel

ASTM A356 grade 8 belongs to the iron alloys classification, while CC383H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A356 grade 8 and the bottom bar is CC383H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
130
Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 21
20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
52
Tensile Strength: Ultimate (UTS), MPa 630
490
Tensile Strength: Yield (Proof), MPa 390
260

Thermal Properties

Latent Heat of Fusion, J/g 260
240
Maximum Temperature: Mechanical, °C 440
260
Melting Completion (Liquidus), °C 1470
1180
Melting Onset (Solidus), °C 1430
1130
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 38
29
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
5.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
44
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.0
5.7
Embodied Energy, MJ/kg 26
83
Embodied Water, L/kg 55
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
84
Resilience: Unit (Modulus of Resilience), kJ/m3 390
250
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
15
Strength to Weight: Bending, points 21
16
Thermal Diffusivity, mm2/s 10
8.1
Thermal Shock Resistance, points 18
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.010
Boron (B), % 0
0 to 0.010
Cadmium (Cd), % 0
0 to 0.020
Carbon (C), % 0 to 0.2
0 to 0.030
Chromium (Cr), % 1.0 to 1.5
0
Copper (Cu), % 0
64 to 69.1
Iron (Fe), % 95.4 to 97.4
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0.5 to 0.9
0.6 to 1.2
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0
29 to 31
Niobium (Nb), % 0
0.5 to 1.0
Phosphorus (P), % 0 to 0.035
0 to 0.010
Selenium (Se), % 0
0 to 0.010
Silicon (Si), % 0.2 to 0.6
0.3 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.010
Tellurium (Te), % 0
0 to 0.010
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0
0 to 0.5